

1

Stealing passwords via browser refresh

Introduction
Browsers have the ability to maintain a recent record of pages that were visited

by a user. The back and forward button on browsers use this functionality to

display the pages recently browsed. In addition browsers also keep track of

variables that were POSTed to the server while fetching the page.

The refresh feature immensely increases the functionality of the browsers and

makes it convenient for users. Moreover it is done transparently so that users do

not need to be aware that the variables are automatically posted to the server. All

that a user has to do is to click on the “yes” button of a dialog box prompted by

the browser before re-posting. This lets a user view the same pages that he had

visited before.

Considering functionality, this is a very powerful feature but it can also be used to

capture important user credentials from a browser. Here the inherent feature of

the browser to store POST variables is exploited to gain access to important user

credentials.

We will also be discussing another variation of the attack. These attacks are very

simple to execute and require medium level of skills. For each variation of the

attack we have proposed the solution used to address the issue.

Author: Karmendra Kohli [karmendra.kohli@secureyes.net]

Date: August 07, 2004 Version: 1.1

The browser’s back and refresh features can be used to steal passwords

 from insecurely written applications. This paper discusses the

problem and the solution. We will show how a bad guy can access

the user credentials of the previously logged in user by exploiting this

feature, if the web application has not been developed securely

2

Capturing the login credentials of a user by refreshing the post
login page

Let us consider a user making some online transactions on the Internet.

1. The user types in the URL of the site he wants to visit. In reply the page

say “login.asp” is displayed. The web application uses a username and

password as the user credentials. This page has form fields “Login ID” and

“Password”, like what we have seen in many sites.

2. The user types his Login ID and password and submits the request to the

server. On the server authentication is done by an ASP script, say

Myhome.asp, that presents the user with the first page after login, say

Myhome.asp.

3. The user browses a number of intermediate pages on the site; say

page2.asp, page3.asp, etc.

4. After the user has completed his transactions and finished browsing, he

finally clicks on the “Sign Out” button. The logout page, say logout.asp, is

invoked which logs off the user. After the logout.asp is displayed on the

browser, assume the user leaves the machine without closing the browser

window.

5. If a bad guy has access to the same machine as the user, he can see that

a logout page is displayed on a browser window.

6. He clicks on the back button drop down list and identifies the page

immediately after login – here Myhome.asp. He clicks on the drop down

list corresponding to the Myhome.asp page and is displayed the “Warning:

Page has Expired” error page that we have seen many a times.

3

7. At this point the bad guy starts a browser proxy1 and configures the

browser to go through the proxy.

8. On the error page he clicks the refresh button. A pop up warns the user

that some of the variables are to be reposted in order for the page to be

displayed and asks the user if he wants to continue or not. The bad guy

clicks yes.

1 A browser proxy is a tool that can capture the data flowing between a browser and web server. The
browser’s proxy settings have to be set to use the proxy. Achilles browser proxy was used during our tests.

4

9. The bad guy views the request sent from the browser to the server in a

browser proxy. He is able to see the username and password of the user.

He now has complete knowledge of user credentials and hence complete

control over the account.

5

Cause of the problem
What happens is that each browser instance remembers all pages that it had

displayed to the user. In addition to this it also keeps track of all requests that

were sent to the server for fetching a particular page. In our case the

“Myhome.asp” was displayed only after the user had entered his “Login ID” and

“Password”. So the browser in addition to remembering that at some moment of

time it had served Myhome.asp to the user also remembers the request that was

sent for fetching the Myhome.asp – which contains the “Login ID” and

“Password” the user had provided on the login.asp page.

Now when the bad guy clicks the refresh button on Myhome.asp, the request that

had been used to render the Myhome.asp page is resent to the server. This

request contains the “Login ID” and “Password” credentials which the bad guy

can intercept.

Solution
We have listed down two solutions that can be used to solve the above issue.

Introduce an intermediate page to carry out the authentication or use the salted

hash technique to post the passwords to the server.

1. The recommended solution is to introduce an intermediate page, say

Authentication.asp, which performs the authentication checks.

To understand how that solves the problem, let’s first look more closely at

what had happened during login.

o User types URL www.site.com

o User gets login.asp

o User submits Login credentials which are send to Myhome.asp

o User is authenticated by Myhome.asp and is displayed

Myhome.asp

6

The following figure denotes the above steps:

Now, consider that an intermediate page has been introduced. The steps

performed are:

o User types URL www.site.com

o User gets login.asp

o User types Login credentials and submits which are sent to

Authentication.asp

o User is authenticated by Authentication.asp.

o The Authentication.asp then redirects the user to Myhome.asp.

In this case the user submits the Login ID and password to

Authentication.asp. Here the Authentication.asp was never displayed on the

browser, hence there is no possibility of the bad guy using the back button to

reach the Authentication.asp page. If the bad guy does a refresh on

Myhome.asp page, the request which the browser used to render

GET www.website.com/

POST Login ID+Password

www.website.com/login.asp

www.website.com/Myhome.asp

Myhome.asp

login.asp

login.asp

7

Myhome.asp is sent. This request is nothing but a redirect request sent by

Authentication.asp. Here an important note is that the redirection request

must contain the session ID assigned to the user after authentication.

The following figure explains the solution described above:

2. A second solution is to use a salted hash technique for authentication. A

discussion on salted hash is outside the scope of this paper; the AppSec FAQ

at OWASP has an excellent write-up on salted hash technique.2

2 http://www.owasp.org/documentation/appsecfaq

GET www.website.com

POST Login ID+Password

GET www.website.com/Myhome.asp

www.website.com/Login.asp

Redirect to www.website.com/Myhome.asp

www.website.com/Myhome.asp

login.asp

login.asp Authentication. asp

Redirect request
Myhome.asp

8

Variations of the attack

Capturing user credentials by refreshing an intermediate page
The above attack also works for any intermediate page on the application where

important user credentials are POST-ed to the server. An example is the

password change page. While browsing the site if the user had visited the

change password page then the variables posted by him – typically the old

password and the newly chosen password - are stored by the browser. If a

refresh is done on this page then the request containing these passwords is sent

to the server and can be viewed using a browser proxy tool.

Solution

1. The solution is same as discussed earlier. Here too we have to introduce an

intermediate page. The password change request should be accepted and

processed by this intermediate page. The result of the password change is

then displayed to the user by redirection to the next page.

Capturing login credentials when the application uses frames
We discuss a variation of the attack when a site uses frames. Let us consider

that in the above example, Myhome.asp consists of two frames. The frame on

the top consists of links to other applications and the bottom frame is used to

display the results of a request. The frame on top, after getting rendered from the

server the first time, remains constant and is not changed while browsing from

one page to another. The bottom frame changes for each request.

As the top frame remains constant, a refresh on ANY page will resend the

request containing the user credentials. Here what happens during a refresh is

that both the frames are individually refreshed. The frame on top refreshes and

sends the request that was used to render itself. This was the first request from

login.asp containing the username and password. Hence it contains the user

credentials. The bottom frame refreshes and sends the request generated by its

previous page. So we can view the username and password by using a browser

proxy.

9

Solution

1. The solution for this, as discussed above, is to display the Myhome.asp by

redirecting through an intermediate Authentication.asp.

2. Another solution as described above is to use the salted hash technique for

authentication.

Conclusion
We have seen how simple it is to steal user credentials by using the browser’s

back and refresh features if a web application has not been developed securely.

By implementing the solutions mentioned, we can safeguard the user’s

credentials from unauthorized access.

References:

Application Security FAQ at Open Web Application Security project

URL: http://www.owasp.org/documentation/faq.html

SecurityFocus HOME Mailing List: Web Application Security

URL: http://www.securityfocus.com/archive/107

